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We consider the two-dimensional problem of a linearly stratified salt solution 
contained between two infinite vertical plates. The fluid and the plates are 
initially at  the same temperature. A t  t = 0, one of the plates is given a step 
increase in temperature, while the other is maintained at the initial temperature. 
A time-dependent basic flow is thus generated. The stability of such a time- 
dependent flow is analysed using an initial value problem approach to the linear 
stability equations. The method consists of initially distributing small random 
disturbances of given vertical wavelength throughout the fluid. The disturbances 
may be in the vorticity, temperature or salinity. The linearized field equations 
are integrated numerically. The growth or decay of the kinetic energy of the per- 
turbation delineates unstable and stable states. Results have been obtained for 
a wide range of gap widths. The critical wavelength and the critical Rayleigh 
number compare favourably with those obtained previously in both physical 
and numerical experiments. 

1. Introduction 
If a tank of fluid whose density is stratified owing to a salinity gradient is 

subjected to heating from a side wall, horizontal cellular motion results when the 
temperature difference exceeds a certain minimum. These cells may be generated 
by the restraining effects of the top and bottom walls, or they may be a secondary 
flow pattern generated as a result of a double-diffusive instability. The former 
process was investigated 40 years ago (Mendenhall & Mason 1932); the diffusive 
instability effect has been under study only recently (Thorpe, Hutt & Soulsby 
1969; Chen, Briggs & Wirtz 1971, hereafter referred to as THS and I respectively). 
In  THS the temperature gradient was established very slowly so that the density 
deficit due to heating was nearly compensated by the lateral salinity gradient. 
Because of the rapid diffusion rate of heat as compared with that of salt, a suitably 
slanted motion of a fluid parcel causes the release of the available potential energy 
storedin the salt solution. If the motion thus induced can overcome viscous damp- 
ing, flow instability results. This phenomenon was indeed predicted by THS using 
a linear stability analysis in which the small vertical velocity field and the non- 
diffusive wall effects near the two walls were ignored. According to that theory 
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the critical value of the thermal Rayleigh number Ra is related to the solute 
Rayleigh number R, by 

(1 )  

where Ra = gaATD3/tcv and R, = gP(&!i'/aZ)D*/~~v, in which g is the gravita- 
tional acceleration, M: and @ the coefficients of expansion clue to heat and salt, 
AT the temperature difference across the plates, set a distance D apart, K and 
K, the diffusivities of heat and salt, and v the kinematic viscosity. In  this expres- 
sion the ratio of diffusivities K / K ~  = 101. In a recent paper Hart (1971) solved 
the stability problem with the boundary-layer flow taken into account. He 
showed that the boundary-layer flow was stabilizing whereas the interior 
almost quiescent region was destabilizing. The critical condition ( 1) becomes 
asymptotically correct for large values of - R,, which is usually the case of 
interest. The theoretical prediction has been confirmed by experiments per- 
formed by THS in 3.6 and 6mm slots. 

Our experiments (described in I) were carried out in a wide tank (12.7 cm 
across) and the temperature of one side wall was increased quite suddenly (the 
time constant for this temperature rise to penetrate the wall was about 3 min). 
The basic state was a time-dependent one. A natural length scale in this situation 
is the height h through which a heated fluid element must rise in order to become 
neutrally buoyant in the given density gradient. By carrying out a number of 
experiments, we ha,ve determined that the critical thermal Rayleigh number 
R based on h above which cellular convection occurs is 15000 & 2500. Had the 
basic state been a steady one arrived at  by heating the side wall slowly, (1) would 
have given a critical Rayleigh number based on h 

Ra = 0-059( - R,)'Z, 

R = 420L2, (2) 

where L is the width of the tank normalized with respect to h. In  our tests, in 
which h - I cm, such a critical Rayleigh number would have been - 60000. 
When the heating is applied impulsively, the velocity generated near the walls is 
quite high initially, thus inducing a large salinity gradient. Coupled with a large 
temperature gradient near the hot wall, a critical state may be reached even 
though the temperature difference imposed may be smaller than the critical 
value obtained for the steady basic state. Our experiments yielded a critical 
wavelength ranging from - 0.7 h to h with no discernible trend with the Rayleigh 
number. 

A more detailed laboratory study of the initial formation of the cells and the 
structure of the quasi-steady convection layers has been carried out by us more 
recently (Wirtz, Briggs & Chen 1972, hereafter referred to as 11). Also included 
in that paper are the results of numerical experiments carried out by integrating 
the nonlinear equations governing the two-dimensional motion of a stratified 
fluid subjected to sudden heating from a side wall. When the fluid was in a con- 
tainer, our numerical results showed that at  large Rayleigh numbers cells were 
generated successively inward from the top and bottom boundaries in agreement 
with the observations of Mendenhall & Mason (1932). For an infinite slot, periodic 
boundary conditions were applied over a vertical distance chosen on the basis of 
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experimental results. At a Rayleigh number of l o 5  and gap width L = 1.3, cells 
were generated when a continuous input of small random disturbances in the 
vorticity was applied. Detailed mappings of the salt, temperature and velocity 
fields were obtained. These were essentially ad hoc cases; no systematic search- 
ing for the fastest-growing wave was attempted, nor were any wide-gap cases 
calculated because of the prohibitive computer time that would be involved. 

In  the present work we examine the problem using the linear stability ap- 
proach to answer the following questions. What is the effect of gap width on the 
onset of secondary flow, especially at  large gaps L - 52 How does the critical 
wavelength vary with the Rayleigh number? What is the mechanism of the 
initial stages of diffusive instabilities ? 

The method consists of initially distributing small random disturbances in the 
fluid. The subsequent motion of the fluid is obtained by numerically integrating 
the linearized equations, assuming a sinusoidally height-dependent perturbation, 
This involves far less computer time than the previous nonlinear calculations. 

The basic state is classified as stable or unstable according to whether the 
kinetic energy of the perturbations decays or grows with time. The reasons for 
choosing this criterion are given detailed discussion in Liu & Chen (1973). 
This method has been used by Foster (1965) and Gresho & Sani (1971) for study- 
ing the stability of a fluid layer with time-dependent temperature gradients, 
and by Chen & Kirchner (1971) and Chen, Liu & Skok (1973) for studying the 
stability of time-dependent circular Couette flows. In  the present study con- 
sistent results are obtained whether the initial disturbances are in the vorticity, 
temperature or salinity. 

The wavelength of the initial disturbances is systematically varied; that wave 
which attains the fastest growth is the critical one. Results have been obtained 
for 1 < L Q 8. The critical wavelength and Rayleigh number thus obtained 
compare favourably with those previously obtained in physical and numerical 
experiments reported in I and 11. 

2. Equations and methods of calculation 
Consider the two-dimensional problem of a linearly stratified fluid contained 

between two infinite vertical plates separated by a distance L'. The density of the 
fluid may be approximated by 

where 

(3) 

(4) 

in which T' and s' denote temperature and salinity, respectively, and the sub- 
scripts 0 denote reference values. Initially, the fluid is at a uniform temperature 
Ti and the density stratification is due to the salinity gradient alone. At t = 0 the 
temperature of one of the plates is raised to T;+AT' and a convective flow is 
generated. We investigate the conditions under which the flow will evolve into 
horizontal cellular motion. 
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We have demonstrated in I that the natural length scale for the present 
problem is the height through which a heated element would rise in the given 
stratified surroundings to become neutrally buoyant: 

h = EAT’ / [  -PI-’  (ap’/ax’)lo = EAT’/[ -,8(aS’/&’)lo. 

Using h as the basic length and the thermal diffusion time h 2 / ~  as the basic time 
unit, the non-dimensional vorticity equation in the Boussinesq approximation is 

CT denotes the Prandtl number and the Rayleigh number R is defined in terms of 
the length scale h as 

with the gravitational acceleration g in the - z direction. It has been assumed 
that all fluid properties are constant. The non-dimensional temperature and 
salinity are defined as 

R = (gcdT’/vK) h3, (6) 

T = (T’ - T;)/AT’, S = - (S’ - S;)/h(dS’/dz’),. ( 7 )  

With this definition of 8, the initial salinity gradient is - 1. The heat and salt 
diffusion equations are 

DTIDt = V2T, (8) 

DSIDt = ( K S / K )  v28. (9) 

The relationship between the vorticity and stream function, and the definition 
of the stream function are 

VZ@ = (I), (10) 

a$/az = u, a$/ax = --w. (31) 

(12) 

(13) 

The initial conditions are 

T(x ,  Z, t < 0) = 0, dS/dz = - 1. 

The boundary conditions are T(0,  z )  = 1, 

T(L,z) = u(O,Z)  = u(L,x) = w ( O , Z )  = w(L,z) = 0,  

aN/az = 0 at x = 0,L. 

The basic convective state admits a solution which consists of purely vertical 
motion. This motion is initially oscillatory at  the buoyancy frequency and ap- 
proaches a steady state in which the salt distribution is linear across the gap 
except in the neighbourhood of the walls, and there is slow motion up the heated 
plate and down the other plate (Hart 1971). 

Using the subscripts 0 and 1 to denote the basic and perturbed states respec- 
tively, the linearized equations are 

DA = aV2w,-~R-(T,-Sl)-u a -, a% 
Dt ax ax 
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in which 

The perturbation quantities ul, w1 and TI all vanish at the boundary and S,  
has zero x-derivative at  the two walls. The equations governing the basic flow 
are quite similar to the above set and need not be written out here. 

The results of our physical and numerical experiments indicate that the 
perturbed state is periodic in x.  We therefore assume that the perturbed quanti- 
t,ies have the following form : 

w1 = (w, + iw i )  eiblz, etc., (19) 

in which the subscripts r and i denote real and imaginary parts, respectively. 
When these are substituted into (14)-(18) and the real and imaginary parts 
separated, we obtain a set of eight simultaneous equations. Six of these prescribe 
the time evolution of T,, S ,  and w1 and two relate the stream function to the 
vorticity . 

The calculation procedure is to assume small random perturbations in the 
vorticity, temperature or salinity as initial conditions. The time evolution 
of the motion generated by these initial disturbances is obtained by numericall>- 
integrating the above set of equations as well as the basic flow equations. The 
growth or decay of the kinetic energy of the perturbed flow serves to indicate 
whether the basic flow is unstable or stable. 

The kinetic energy of the perturbation flow per wavelength is 

K2 2niK L 
E p  = ip;@J0 So [ l - ~ A T ’ ( T + X ) ] ( u 2 + ~ 2 ) d x d z ,  

Since aAT‘ is generally of order 
a.bove expression may be rewritten as 

for the Rayleigh numbers of interest, the 

(21) 
The kinetic energy of the basic flow is 

In  the case of initial vorticity perturbations, the kinetic energy of the per- 
turbations is normalized with respect to its initial value. In  the case of initial 
temperature or saIinity perturbations, the perturbation kinetic energy is nor- 
malized with respect to the initial potential energy. Suppose that the initial 
salinity perturbation is 6s; the increase in potential energy per unit mass is 
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The ratio of the kinetic energy of the perturbations to -the initial potent.is1 
energy, after some cancellation and re-arrangements, is 

For initial temperature perturbations, 6s is replaced by ST. 
The calculations are initiated by assigning small random perturbations in 

vorticity, temperature or salinity at  all grid points. The values of the random 
perturbations in vorticity lie between 0 and 10-4, whereas those for temperature 
or salinity perturbations lie between 0 and lo-*. These different ranges of values 
are chosen so that the initial kinetic energy in the case of vorticity perturbations 
and the initial potential energy in the case of temperature or salinity perturba- 
tions are of the same order of magnitude: N 10-lo. The evolution of the motion 
generated by the side-wall heating as well as the perturbations is monitored by 
numerical integration of the basic and perturbation equations for a particular 
value of the wavenumber K .  The time-dependent diffusion equations are written 
in finite-difference form, using forward time differences and central space 
differences. The integration proceeds forward in time, with an increment At which 
must be small to ensure stability. Of the three diffusion equations, the vorticity 
equation places the upper limit on the time steps, since (r N 6 and K ~ / K  - 0.01. 
In  the computations we take 

At = O . ~ ( A X ) ~ / V .  

The equation relating the vorticity and stream function, when written in 
finite-difference form, results in a tridiagonal matrix form which can be solved 
by Gaussian elimination (see, for example, Keller 1968, p. 72). The normalized 
kinetic energy of the perturbations is evaluated at each time step. The wave- 
number K is systematically varied to obtain the fastest-growing wave. The 
accuracy of this numerical scheme has been tested by us for a steady Couette 
flow. The critical Taylor number predicted by this method was found to be 
within 0.5 % of the accepted value. 

3. Results and discussion 
Our physical experiments (I) were carried out in a tank whose width was 

very large compared with the characteristic length h. In  the numerical experi- 
ment (11), in order to bring the number of grid points and the computation time 
to reasonable magnitudes, the gap was fixed to be of the same order of magnitude 
as h. In  fact, for R = lo5, the gap was 1.3h. For the present calculations, since 
we are dealing with linear equations L is varied from 1 to 8. The physical con- 
stants are the same as those used in 11, and they are listed below: 

v = 0.93 x 10-2cm2s-1, K = 1.488 x 10-3cm2~-1, rc, = 0.937 x 1 0 - 2 ~ ,  

a = 3-06 x 10-40c-1, 

For all calculations, the initial density gradient is set a t  - 1.64 x cm-1. 
With this set of values, at R = lo5 the temperature difference AT is 5-16 "C 
and the length scale is 0.96 em. 

v = 6.25. 
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FIGURE 1.  Vertical velocity of basic flow at t = 0.06. + , Ax = 0.1 ; 
X ,  AX = 0.05; 0, AX = 0.025. 

The basis for selecting the number of grid points in 0 < x < L is the accuracy 
of results, and a t  the same time economy of computing time. For a test case, 
calculations are made with Ax = 0.1, 0-05 and 0.025 with L = 1 and R = 105. 
For the basic temperature distribution Ax = 0.1 suffices. The requirement 
for the basic velocity distribution is more stringent. As shown in figure 1, Ax 
needs to be 0-05 or smaller in order to yield accurate results in the main body of 
the flow. The slight discrepancy near the two walls is not expected to affect the 
instability results, since it is in these regions that diffusive instability is inhibited. 
It is to be noted that the actual magnitude of the velocity is extremely small. 
A value of the non-dimensional velocity of unity corresponds to approximately 
1.5 x lO-3cm/s.t The growth rate of the perturbation kinetic energy is unreason- 
ably large when Ax = 0.1, as shown by table 1. However, the differences between 
results with Ax = 0-05 and 0.025 are quite tolerable especially in view of the 
fact that a .consistent value of the critical wavelength is obtained for both 
cases. The computing time would increase more than four fold if the smaller Ax 
were used. For all subsequent calculation, Ax is set to be 0.06. This distance is 
larger than the salt diffusion length up to the time of onset of secondary flow. 
But the salt transport is almost entirely due to convection except very close 
to the wall, where the salinity is determined by the non-diffusive wall boundary 
condition. 

t We also note that the ratio of the velocity scale used by Hart to ours is RL2. 
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Growth rate Time to reach 
Ax at E = 103 E = 103 

0.1 256 0.060 
0.05 92 0.133 
0.025 87 0.148 

TABLE 1 

Development of the bmicfllow 

From Hart’s (1971) analysis, it is known that the sideways diffusive instability 
is initiated in a region where the horizontal gradients of temperature and salinity 
are nearly the same. Any suitably slanted movement of a parcel of fluid causes 
the release of available potential energy when the temperature is equilibrated. 
If the lateral gradients are large enough, the motion caused by the buoyancy 
difference overcomes viscous damping and secondary flow ensues. The boun- 
dary-layer regions near the walls are stabilizing because of the nearly constant 
salinity distribution forced by the non-diffusive wall. 

In  the present time-dependent case, the step increase in temperature is im- 
posed on one wall impulsively. An upward flow is immediately generated along 
the heated wall, thus establishing a horizontal salinity gradient. The onset of 
diffusive instability will be predicted under the conditions that T, - S, is nearly 
zero and at the same time T, is large. In  figure 2 we have displayed Tx-S, for 
L = 1 and R = lo5 at t = 0*015,0.035,0.135 and 5. At the earliest time t = 0.015. 
the large negative temperature gradient near the hot wall is manifested by the 
large negative values of T,-S,. There is also a small region near the other 
wall where T, - S, is negative owing to the positive salinity gradient as a result 
of downward motion. However, there is aregion occupying about one third of the 
gap width within which T, - S, = 0. This equal-gradient region expands towards 
the hot wall as time goes on. At t = 0.135 the distribution of T, - X, is quite close 
to its asymptotic value represented by t = 5 curve. Within the region x < 1 
the time evolution of T, - S, for larger gap widths is almost identical to the L = 1 
case except that the equal-gradient region extends beyond x = 1. 

The temperature gradient at any point decreases from its initial value of 0 
to its asymptotic value of - 1/L. If the point is relatively close to the hot wall, 
then the temperature gradient will first reach a minimum then increase towards 
- 1/L. The evolution of the temperature gradient at x = 0.5 for L = 1 is shown in 
figure 3. Within the time period t < 0-2, the same rise curve for T ,  is obtained 
for all the gap widths considered. In  particular, the values for L = 5 are shown on 
the same figure. In  fact the temperature distribution for L = 2 a t  t = 0.2 is almost 
indistinguishable from that for L = 00. From the results shown in figures 2 and 3, 
it is seen that diffusive instability will be triggered at  approximately the same 
time for a given supercritical Rayleigh number regardless of gap width so long as 
L 3 1.  This fact is borne out in the perturbation calculations. 
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FIGURE 2. Evolution of T, -8, for L = 1. - - - -, t = 0.015; 
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Development of perturbation kinetic energy 

Gresho & Sani (1971), in their investigation of the stability of a horizontal 
fluid layer subjected to a step change in temperature, have found that initial 
temperature disturbances assume a very much faster growth rate than initial 
velocity disturbances. In  their problem, a temperature disturbance gives rise 
to unbalanced buoyancy forces immediately, whereas a velocity disturbance 
can generate such a force only when the temperature of the fluid has been altered 
by diffusion from the boundary. In  the present case, owing to the initial strati- 
fication, any disturbance in vorticity, temperature or salinity would immediately 
produce buoyancy imbalance. It is, therefore expected that the normalized 
perturbation kinetic energy would behave in a similar manner, whether the initial 
perturbations are in w, T or S. This is confirmed by a test case for L = 1. The 
growth rate ofthe perturbation kinetic energy is essentially the same for all three 
types of initial perturbations. They all yield the same critical wavelength of 
A, = 0.54. For all subsequent calculations initial vorticity perturbations are used 
because we think that this type of disturbance is most likely to occur in a 
laboratory, 

A systematic search at R = 105 for L = 2, 3, 4 and 5 yields an identical 
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FIGURE 3. Evolution of temperature gradient at z = 0.5. -, L = 1 ;  0, L = 5. 

critical wavelength of 0.56, slightly higher than for the narrow-gap case L = 1 .  
In  the numerical experiments reported in 11, for the same Rayleigh number 
but for L = 1.3, the size of the cells can be estimated from the streamline plots 
to be about 0.65h. The results of physical experiments (I;  111, obtained in a wide 
tank, show that the cell sizes ranged from 0-67h to 0-97h. The difference between 
the present results and the results of numerical simulation is due to the selection 
of the vertical extent of the region to be calculated in 11. Once the region has been 
selected, because of the periodic conditions imposed on the boundaries, an inbegral 
number of cells will result, and the size of the cells certainly will be biased. 
In  our physical experiments reported both in I and 11, we have observed that 
there was a continuous merging process of the cells or rolls soon after the onset 
of cellular motion. The present calculation obtains a critical wavelength which 
determines the initial size of the boundary motion. As the amplitude of the motion 
becomes finite and merging processes set in, the cell size will increase. The cell 
sizes in I were obtained by counting the number of cells in the entire test tank 
a t  t = 20 min. It is then expected that these cells will be larger than those right 
at the onset of secondary motion. 

In  figure 4 growth curves of the perturbation kinetic energy for all cases 
considered a t  R = lo6 are shown. The normalized perturbation kinetic energy 
decreases sharply u t  first owing to viscous damping, then grows exponentially. 
The growth rates of all these curves are quite similar, and the time for E to attain 
lo3 ranges from 0.135 to 0- 155 or approximately 100 s in real time. It is interesting 
to note that, in the calculations of 11, the total kinetic energy of the system starts 
to depart from the kinetic energy of the basic flow at about 100 s (see 11, figure 13). 
The streamline plots and temperature contour maps (11, figures 9 and 10) show 
that cellular structures are discernible at  160s. In  one of the physical experi- 
ments carried out by Wirtz (1971, figure 20) for a Rayleigh number of 3-7 x lo5, 
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FIGURE 4. Growth of perturbation kinetic energy at €3 = 106. 
A, = 0.54 for L = 1, h, = 0.56 for 2 < L < 5. 

the cine-film record of the experiments shows that the onset of cellular motion 
occurs between 90 and 100 s. 

In  the same figure, the energy E ,  of the basic flow for L = 2 is also shown. It 
oscillates with a decreasing amplitude but with a constant circular frequency 
of 0-2 s-l, which is the Brunt-ViiisalB; frequency of the salinity gradient used. 

A series of calculations made for L = 5 at different Rayleigh numbers shows 
that the criticalwavelength decreases slightly as the Rayleigh number isincreased. 
Of course the time needed for E to reach lo3 decreases as the Rayleigh number is 
increased. The results are summarized in table 2, in which t ,  denotes the time 
atwhich E = lo3. 

Transition regime 
Our physical experiments were carried out in a wide tank with L - 12. The 
steady-state critical Rayleigh number for this width according to (2) is approxi- 
mately 60000. The experimental results show that with an impulsively applied 
temperature difference the critical Rayleigh number is 15 000 2 2500. It is reason- 
able to believe that this critical value will be obtained as long as the width of the 
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R 

t 3  

7-m 
A, Non-dimensional Dimensional (s) 

0 . 5 ~  10 0.63 0.335 145 
1.0 x 10 0.56 0.155 97 
5.0 x 10 0.55 0.037 52 

TABLE 2 

f 

FIGURE 5. Perturbation streamlines at t = 0.15, R = 106, = 0.6. 
= 5 1, k 0.8, f 0.6, k 0.4, k 0.2, 0 ;  $max = 3.9 x 10-5. 

tank is such that the steady-state critical Rayleigh number exceeds 17500. 
We have considered a case with L NN 8 for which the steady-state critical Rayleigh 
number is 26900. Calculations were made for R = lo4 and 2 x lo4. For a sub- 
critical Rayleigh number of  lo4, E drops to a very small value initially, then grows 
to a maximum of 1.33 x at t = 1-44 (or 28s) then decays steadily. For a 
supercritical Rayleigh number of 2 x lo4, after the initial drop, E grows steadily 
and at  t = 1.44, it has attained a value of 20. The result confirms our experimental 
observation that transition occurs between 12 500 and 17 500. 

Flow pattern 

The perturbation streamlines for the case R = lo5, L = 2, h = 0.6 at t = 0.15 are 
shown in figure 5. Although this is not at the critical wavelength of 0-56, the flow 
pattern is not expected to differ much from the critical state. The streamlines 
exhibit pairs of counter-rotating vortices centred near the hot wall and dis- 
placed upward owing to  the buoyancy effect. The flow pattern is entirely different 
from that obtained both in the physical and numerical experiments, which con- 
sists of a row o f  vortices of the same sign with strong shear at the boundaries. 
The present flow pattern is a necessary consequence of the assumption that all 
perturbation quantities are periodic in z as exp iKz (see also THS). It is physically 
plausible that the positive vortex is unstable since i t  flows against t,he buoyancy 
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generated near the hot wall. As a result the negative vortex would expand to 
fill almost the entire wavelength with the positive vortex squeezed into the 
strong shear region observed in experiments. This conjecture, however, awaits 
further analysis. 

4. Conclusions 
From the results obtained, the following conclusions may be drawn, 
(i) It is immaterial what type of initial perturbation (whether in w ,  T or S)  

is assumed. Consistent results can be obtained. 
(ii) The effect of gap width on the rate of growth of perturbation kinetic 

energy and the critical wavelength is very small as long as the gap is larger than 
the characteristic length h. 

(iii) The critical wavelength at  R = lo5 for L = 1 is 0.54h and for 2 < L < 5 
is 0.56h. These values are comparable with the values 0*65h, obtained from the 
numerical experiment, and 0.67-0.97h, obtained from the physical experiment. 

(iv) The critical wavelength decreases slightly with increasing Rayleigh 
number . 

(v) For a gap L = 8, the transition regime is determined to be between R = lo4 
a.nd 2 x lo4. Experimentally we have found the range to be 12 50&17 500. 

(vi) The linear theory predicts a flow pattern consisting of counter-rotating 
vortices, which is not what has been observed in the experiments. 

A substantial part of this work was performed when I was on research leave 
at DAMTP, University of Cambridge, during the academic year 1971-1972. 
The research leave was made possible by a Rutgers University Faculty Fellow- 
ship, for which I am grateful. I also wish to thank Professor G. K. Batchelor for 
providing me with a. hospitable and stimulating environment in which to work. 
Part of this work was presented a t  the 13th International Conference of Theo- 
retical and Applied Mechanics, Moscow, August 1972. 
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